[opus] 2 patches related to silk_biquad_alt() optimization

Jean-Marc Valin jmvalin at jmvalin.ca
Mon May 15 16:36:39 UTC 2017


Hi Linfeng,

Sorry for the delay -- I was actually trying to think of the best option
here. For now, my preference would be to keep things bit-exact, but
should there be more similar optimizations relying on 64-bit
multiplication results, then we could consider having a special option
to enable those (even in C).

Cheers,

	Jean-Marc

On 08/05/17 12:12 PM, Linfeng Zhang wrote:
> Ping for comments.
> 
> Thanks,
> Linfeng
> 
> On Wed, Apr 26, 2017 at 2:15 PM, Linfeng Zhang <linfengz at google.com
> <mailto:linfengz at google.com>> wrote:
> 
>     On Tue, Apr 25, 2017 at 10:31 PM, Jean-Marc Valin
>     <jmvalin at jmvalin.ca <mailto:jmvalin at jmvalin.ca>> wrote:
> 
> 
>         > A_Q28 is split to 2 14-bit (or 16-bit, whatever) integers, to make the
>         > multiplication operation within 32-bits. NEON can do 32-bit x 32-bit =
>         > 64-bit using 'int64x2_t vmull_s32(int32x2_t a, int32x2_t b)', and it
>         > could possibly be faster and less rounding/shifting errors than above C
>         > code. But it may increase difficulties for other CPUs not supporting
>         > 32-bit multiplication.
> 
>         OK, so I'm not totally opposed to that, but it increases the
>         testing/maintenance cost so it needs to be worth it. So the
>         question is
>         how much speedup can you get and how close you can make the
>         result to
>         the original function. If you can make the output be always
>         within one
>         of two LSBs of the C version, then the asm check can simply be a
>         little
>         bit more lax than usual. Otherwise it becomes more complicated. This
>         isn't a function that scares me too much about going
>         non-bitexact, but
>         it's also not one of the big complexity costs either. In any
>         case, let
>         me know what you find.
> 
> 
>     Tested the proposed NEON optimization change, it can increase the
>     whole encoder speed by about 1% at Complexity 8 and 10 for stride =
>     2 (compared to the NEON optimization in the previous patch), and
>     0.7% at Complexity 8 and 1.1% at Complexity 10 for stride = 1
>     (compared to the original C code).
> 
>     Unfortunately, the truncating difference accumulates in S[] and its
>     difference cannot be easily bounded. The difference in out[] may
>     somehow be bounded to 5 in my quick testing, but is not guaranteed
>     to other inputs. So maybe comparing bit exactness with the
>     following silk_biquad_alt_c_MulSingleAQ28() is better.
> 
>     Please let me know the decision (whether keeping the original NEON
>     (stride 2 only) or choosing the new NEON (both stride 1 and 2) which
>     optimizes following silk_biquad_alt_c_MulSingleAQ28()), and I'll
>     wrap up the patch.
> 
>     Here attached the corresponding C
>     code silk_biquad_alt_c_MulSingleAQ28() for your information. It uses
>     64-bit multiplications and is about 0.6% - 0.9% slower (for the
>     whole encoder) than the original C code using 32-bit multiplications
>     (for both strides and the same stride 2 unrolling).
> 
>     void silk_biquad_alt_c_MulSingleAQ28(
>         const opus_int16            *in,                /* I     input
>     signal                                               */
>         const opus_int32            *B_Q28,             /* I     MA
>     coefficients [3]                                        */
>         const opus_int32            *A_Q28,             /* I     AR
>     coefficients [2]                                        */
>         opus_int32                  *S,                 /* I/O   State
>     vector [2*stride]                                    */
>         opus_int16                  *out,               /* O     output
>     signal                                              */
>         const opus_int32            len,                /* I     signal
>     length (must be even)                               */
>         opus_int                    stride              /* I     Operate
>     on interleaved signal if > 1                       */
>     )
>     {
>         /* DIRECT FORM II TRANSPOSED (uses 2 element state vector) */
>         opus_int   k;
> 
>         silk_assert( ( stride == 1 ) || ( stride == 2 ) );
> 
>         if( stride == 1) {
>             opus_int32 out32_Q14;
>             for( k = 0; k < len; k++ ) {
>                 /* S[ 0 ], S[ 1 ]: Q12 */
>                 out32_Q14 = silk_LSHIFT( silk_SMLAWB( S[ 0 ], B_Q28[ 0
>     ], in[ k ] ), 2 );
> 
>                 S[ 0 ] = S[ 1 ] + silk_RSHIFT_ROUND(
>     (opus_int64)out32_Q14 * (-A_Q28[ 0 ]), 30 );
>                 S[ 0 ] = silk_SMLAWB( S[ 0 ], B_Q28[ 1 ], in[ k ] );
> 
>                 S[ 1 ] = silk_RSHIFT_ROUND( (opus_int64)out32_Q14 *
>     (-A_Q28[ 1 ]) , 30 );
>                 S[ 1 ] = silk_SMLAWB( S[ 1 ], B_Q28[ 2 ], in[ k ] );
> 
>                 /* Scale back to Q0 and saturate */
>                 out[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT(
>     out32_Q14 + (1<<14) - 1, 14 ) );
>             }
>         } else {
>             opus_int32 out32_Q14[ 2 ];
>             for( k = 0; k < len; k++ ) {
>                 /* S[ 0 ], S[ 1 ]: Q12 */
>                 out32_Q14[ 0 ] = silk_LSHIFT( silk_SMLAWB( S[ 0 ],
>     B_Q28[ 0 ], in[ k * 2 + 0 ] ), 2 );
>                 out32_Q14[ 1 ] = silk_LSHIFT( silk_SMLAWB( S[ 2 ],
>     B_Q28[ 0 ], in[ k * 2 + 1 ] ), 2 );
> 
>                 S[ 0 ] = S[ 1 ] + silk_RSHIFT_ROUND(
>     (opus_int64)out32_Q14[ 0 ] * (-A_Q28[ 0 ]), 30 );
>                 S[ 2 ] = S[ 3 ] + silk_RSHIFT_ROUND(
>     (opus_int64)out32_Q14[ 1 ] * (-A_Q28[ 0 ]), 30 );
>                 S[ 0 ] = silk_SMLAWB( S[ 0 ], B_Q28[ 1 ], in[ k * 2 + 0 ] );
>                 S[ 2 ] = silk_SMLAWB( S[ 2 ], B_Q28[ 1 ], in[ k * 2 + 1 ] );
> 
>                 S[ 1 ] = silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ 0 ] *
>     (-A_Q28[ 1 ]), 30 );
>                 S[ 3 ] = silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ 1 ] *
>     (-A_Q28[ 1 ]), 30 );
>                 S[ 1 ] = silk_SMLAWB( S[ 1 ], B_Q28[ 2 ], in[ k * 2 + 0 ] );
>                 S[ 3 ] = silk_SMLAWB( S[ 3 ], B_Q28[ 2 ], in[ k * 2 + 1 ] );
> 
>                 /* Scale back to Q0 and saturate */
>                 out[ k * 2 + 0 ] = (opus_int16)silk_SAT16( silk_RSHIFT(
>     out32_Q14[ 0 ] + (1<<14) - 1, 14 ) );
>                 out[ k * 2 + 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT(
>     out32_Q14[ 1 ] + (1<<14) - 1, 14 ) );
>             }
>         }
>     }
> 
>     Here is the NEON kernels which uses vqrdmulh_lane_s32() to do the
>     multiplication and rounding, where A_Q28_s32x{2,4} stores doubled
>     -A_Q28[]:
> 
>     static inline void silk_biquad_alt_stride1_kernel(const int32x2_t
>     A_Q28_s32x2, const int32x4_t t_s32x4, int32x2_t *S_s32x2, int32x2_t
>     *out32_Q14_s32x2)
>     {
>         int32x2_t t_s32x2;
> 
>         *out32_Q14_s32x2 = vadd_s32(*S_s32x2, vget_low_s32(t_s32x4));  
>                              /* silk_SMLAWB( S[ 0 ], B_Q28[ 0 ], in[ k ]
>     )                                */
>         *S_s32x2         =
>     vreinterpret_s32_u64(vshr_n_u64(vreinterpret_u64_s32(*S_s32x2),
>     32)); /* S[ 0 ] = S[ 1 ]; S[ 1 ] = 0;                              
>                    */
>         *out32_Q14_s32x2 = vshl_n_s32(*out32_Q14_s32x2, 2);            
>                              /* out32_Q14 = silk_LSHIFT( silk_SMLAWB( S[
>     0 ], B_Q28[ 0 ], in[ k ] ), 2 ); */
>         t_s32x2          = vqrdmulh_lane_s32(A_Q28_s32x2,
>     *out32_Q14_s32x2, 0);                  /* silk_RSHIFT_ROUND(
>     (opus_int64)out32_Q14 * (-A_Q28[ {0,1} ]), 30 )        */
>         *S_s32x2         = vadd_s32(*S_s32x2, t_s32x2);                
>                              /* S[ {0,1} ] = {S[ 1 ],0} +
>     silk_RSHIFT_ROUND( );                           */
>         *S_s32x2         = vadd_s32(*S_s32x2, vget_high_s32(t_s32x4));  
>                             /* S[ {0,1} ] = silk_SMLAWB( S[ {0,1} ],
>     B_Q28[ {1,2} ], in[ k ] );          */
>     }
> 
>     static inline void silk_biquad_alt_stride2_kernel(const int32x4_t
>     A_Q28_s32x4, const int32x4_t B_Q28_s32x4, const int32x2_t t_s32x2,
>     const int32x4_t inval_s32x4, int32x4_t *S_s32x4, int32x2_t
>     *out32_Q14_s32x2)
>     {
>         int32x4_t t_s32x4, out32_Q14_s32x4;
> 
>         *out32_Q14_s32x2 = vadd_s32(vget_low_s32(*S_s32x4), t_s32x2);  
>              /* silk_SMLAWB( S{0,1}, B_Q28[ 0 ], in[ k * 2 + {0,1} ] )  
>                                         */
>         *S_s32x4         = vcombine_s32(vget_high_s32(*S_s32x4),
>     vdup_n_s32(0)); /* S{0,1} = S{2,3}; S{2,3} = 0;                    
>                                                 */
>         *out32_Q14_s32x2 = vshl_n_s32(*out32_Q14_s32x2, 2);            
>              /* out32_Q14_{0,1} = silk_LSHIFT( silk_SMLAWB( S{0,1},
>     B_Q28[ 0 ], in[ k * 2 + {0,1} ] ), 2 );  */
>         out32_Q14_s32x4  = vcombine_s32(*out32_Q14_s32x2,
>     *out32_Q14_s32x2);     /* out32_Q14_{0,1,0,1}                      
>                                                        */
>         t_s32x4          = vqrdmulhq_s32(out32_Q14_s32x4, A_Q28_s32x4);
>              /* silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ {0,1,0,1} ] *
>     (-A_Q28[ {0,0,1,1} ]), 30 )          */
>         *S_s32x4         = vaddq_s32(*S_s32x4, t_s32x4);                
>             /* S[ {0,1,2,3} ] = {S[ {2,3} ],0,0} + silk_RSHIFT_ROUND( );
>                                        */
>         t_s32x4          = vqdmulhq_s32(inval_s32x4, B_Q28_s32x4);      
>             /* silk_SMULWB(B_Q28[ {1,1,2,2} ], in[ k * 2 + {0,1,0,1} ] )
>                                        */
>         *S_s32x4         = vaddq_s32(*S_s32x4, t_s32x4);                
>             /* S[ {0,1,2,3} ] = silk_SMLAWB( S[ {0,1,2,3} ], B_Q28[
>     {1,1,2,2} ], in[ k * 2 + {0,1,0,1} ] ); */
>     }
> 
>     Thanks,
>     Linfeng
> 
> 


More information about the opus mailing list