[opus] 2 patches related to silk_biquad_alt() optimization
Linfeng Zhang
linfengz at google.com
Mon May 8 16:12:51 UTC 2017
Ping for comments.
Thanks,
Linfeng
On Wed, Apr 26, 2017 at 2:15 PM, Linfeng Zhang <linfengz at google.com> wrote:
> On Tue, Apr 25, 2017 at 10:31 PM, Jean-Marc Valin <jmvalin at jmvalin.ca>
> wrote:
>
>>
>> > A_Q28 is split to 2 14-bit (or 16-bit, whatever) integers, to make the
>> > multiplication operation within 32-bits. NEON can do 32-bit x 32-bit =
>> > 64-bit using 'int64x2_t vmull_s32(int32x2_t a, int32x2_t b)', and it
>> > could possibly be faster and less rounding/shifting errors than above C
>> > code. But it may increase difficulties for other CPUs not supporting
>> > 32-bit multiplication.
>>
>> OK, so I'm not totally opposed to that, but it increases the
>> testing/maintenance cost so it needs to be worth it. So the question is
>> how much speedup can you get and how close you can make the result to
>> the original function. If you can make the output be always within one
>> of two LSBs of the C version, then the asm check can simply be a little
>> bit more lax than usual. Otherwise it becomes more complicated. This
>> isn't a function that scares me too much about going non-bitexact, but
>> it's also not one of the big complexity costs either. In any case, let
>> me know what you find.
>>
>
> Tested the proposed NEON optimization change, it can increase the whole
> encoder speed by about 1% at Complexity 8 and 10 for stride = 2 (compared
> to the NEON optimization in the previous patch), and 0.7% at Complexity 8
> and 1.1% at Complexity 10 for stride = 1 (compared to the original C code).
>
> Unfortunately, the truncating difference accumulates in S[] and its
> difference cannot be easily bounded. The difference in out[] may somehow be
> bounded to 5 in my quick testing, but is not guaranteed to other inputs. So
> maybe comparing bit exactness with the following silk_biquad_alt_c_
> MulSingleAQ28() is better.
>
> Please let me know the decision (whether keeping the original NEON (stride
> 2 only) or choosing the new NEON (both stride 1 and 2) which optimizes
> following silk_biquad_alt_c_MulSingleAQ28()), and I'll wrap up the patch.
>
> Here attached the corresponding C code silk_biquad_alt_c_MulSingleAQ28() for
> your information. It uses 64-bit multiplications and is about 0.6% - 0.9%
> slower (for the whole encoder) than the original C code using 32-bit
> multiplications (for both strides and the same stride 2 unrolling).
>
> void silk_biquad_alt_c_MulSingleAQ28(
> const opus_int16 *in, /* I input signal
> */
> const opus_int32 *B_Q28, /* I MA
> coefficients [3] */
> const opus_int32 *A_Q28, /* I AR
> coefficients [2] */
> opus_int32 *S, /* I/O State vector
> [2*stride] */
> opus_int16 *out, /* O output signal
> */
> const opus_int32 len, /* I signal length
> (must be even) */
> opus_int stride /* I Operate on
> interleaved signal if > 1 */
> )
> {
> /* DIRECT FORM II TRANSPOSED (uses 2 element state vector) */
> opus_int k;
>
> silk_assert( ( stride == 1 ) || ( stride == 2 ) );
>
> if( stride == 1) {
> opus_int32 out32_Q14;
> for( k = 0; k < len; k++ ) {
> /* S[ 0 ], S[ 1 ]: Q12 */
> out32_Q14 = silk_LSHIFT( silk_SMLAWB( S[ 0 ], B_Q28[ 0 ], in[
> k ] ), 2 );
>
> S[ 0 ] = S[ 1 ] + silk_RSHIFT_ROUND( (opus_int64)out32_Q14 *
> (-A_Q28[ 0 ]), 30 );
> S[ 0 ] = silk_SMLAWB( S[ 0 ], B_Q28[ 1 ], in[ k ] );
>
> S[ 1 ] = silk_RSHIFT_ROUND( (opus_int64)out32_Q14 * (-A_Q28[
> 1 ]) , 30 );
> S[ 1 ] = silk_SMLAWB( S[ 1 ], B_Q28[ 2 ], in[ k ] );
>
> /* Scale back to Q0 and saturate */
> out[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14 +
> (1<<14) - 1, 14 ) );
> }
> } else {
> opus_int32 out32_Q14[ 2 ];
> for( k = 0; k < len; k++ ) {
> /* S[ 0 ], S[ 1 ]: Q12 */
> out32_Q14[ 0 ] = silk_LSHIFT( silk_SMLAWB( S[ 0 ], B_Q28[ 0 ],
> in[ k * 2 + 0 ] ), 2 );
> out32_Q14[ 1 ] = silk_LSHIFT( silk_SMLAWB( S[ 2 ], B_Q28[ 0 ],
> in[ k * 2 + 1 ] ), 2 );
>
> S[ 0 ] = S[ 1 ] + silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ 0
> ] * (-A_Q28[ 0 ]), 30 );
> S[ 2 ] = S[ 3 ] + silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ 1
> ] * (-A_Q28[ 0 ]), 30 );
> S[ 0 ] = silk_SMLAWB( S[ 0 ], B_Q28[ 1 ], in[ k * 2 + 0 ] );
> S[ 2 ] = silk_SMLAWB( S[ 2 ], B_Q28[ 1 ], in[ k * 2 + 1 ] );
>
> S[ 1 ] = silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ 0 ] *
> (-A_Q28[ 1 ]), 30 );
> S[ 3 ] = silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ 1 ] *
> (-A_Q28[ 1 ]), 30 );
> S[ 1 ] = silk_SMLAWB( S[ 1 ], B_Q28[ 2 ], in[ k * 2 + 0 ] );
> S[ 3 ] = silk_SMLAWB( S[ 3 ], B_Q28[ 2 ], in[ k * 2 + 1 ] );
>
> /* Scale back to Q0 and saturate */
> out[ k * 2 + 0 ] = (opus_int16)silk_SAT16( silk_RSHIFT(
> out32_Q14[ 0 ] + (1<<14) - 1, 14 ) );
> out[ k * 2 + 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT(
> out32_Q14[ 1 ] + (1<<14) - 1, 14 ) );
> }
> }
> }
>
> Here is the NEON kernels which uses vqrdmulh_lane_s32() to do the
> multiplication and rounding, where A_Q28_s32x{2,4} stores doubled -A_Q28[]:
>
> static inline void silk_biquad_alt_stride1_kernel(const int32x2_t
> A_Q28_s32x2, const int32x4_t t_s32x4, int32x2_t *S_s32x2, int32x2_t
> *out32_Q14_s32x2)
> {
> int32x2_t t_s32x2;
>
> *out32_Q14_s32x2 = vadd_s32(*S_s32x2, vget_low_s32(t_s32x4));
> /* silk_SMLAWB( S[ 0 ], B_Q28[ 0 ], in[ k ] )
> */
> *S_s32x2 = vreinterpret_s32_u64(vshr_n_u6
> 4(vreinterpret_u64_s32(*S_s32x2), 32)); /* S[ 0 ] = S[ 1 ]; S[ 1 ] = 0;
> */
> *out32_Q14_s32x2 = vshl_n_s32(*out32_Q14_s32x2, 2);
> /* out32_Q14 = silk_LSHIFT( silk_SMLAWB( S[ 0 ], B_Q28[
> 0 ], in[ k ] ), 2 ); */
> t_s32x2 = vqrdmulh_lane_s32(A_Q28_s32x2, *out32_Q14_s32x2,
> 0); /* silk_RSHIFT_ROUND( (opus_int64)out32_Q14 * (-A_Q28[
> {0,1} ]), 30 ) */
> *S_s32x2 = vadd_s32(*S_s32x2, t_s32x2);
> /* S[ {0,1} ] = {S[ 1 ],0} + silk_RSHIFT_ROUND( );
> */
> *S_s32x2 = vadd_s32(*S_s32x2, vget_high_s32(t_s32x4));
> /* S[ {0,1} ] = silk_SMLAWB( S[ {0,1} ], B_Q28[ {1,2} ],
> in[ k ] ); */
> }
>
> static inline void silk_biquad_alt_stride2_kernel(const int32x4_t
> A_Q28_s32x4, const int32x4_t B_Q28_s32x4, const int32x2_t t_s32x2, const
> int32x4_t inval_s32x4, int32x4_t *S_s32x4, int32x2_t *out32_Q14_s32x2)
> {
> int32x4_t t_s32x4, out32_Q14_s32x4;
>
> *out32_Q14_s32x2 = vadd_s32(vget_low_s32(*S_s32x4), t_s32x2);
> /* silk_SMLAWB( S{0,1}, B_Q28[ 0 ], in[ k * 2 + {0,1} ] )
> */
> *S_s32x4 = vcombine_s32(vget_high_s32(*S_s32x4),
> vdup_n_s32(0)); /* S{0,1} = S{2,3}; S{2,3} = 0;
> */
> *out32_Q14_s32x2 = vshl_n_s32(*out32_Q14_s32x2, 2);
> /* out32_Q14_{0,1} = silk_LSHIFT( silk_SMLAWB( S{0,1}, B_Q28[ 0 ], in[ k
> * 2 + {0,1} ] ), 2 ); */
> out32_Q14_s32x4 = vcombine_s32(*out32_Q14_s32x2, *out32_Q14_s32x2);
> /* out32_Q14_{0,1,0,1}
> */
> t_s32x4 = vqrdmulhq_s32(out32_Q14_s32x4, A_Q28_s32x4);
> /* silk_RSHIFT_ROUND( (opus_int64)out32_Q14[ {0,1,0,1} ] * (-A_Q28[
> {0,0,1,1} ]), 30 ) */
> *S_s32x4 = vaddq_s32(*S_s32x4, t_s32x4);
> /* S[ {0,1,2,3} ] = {S[ {2,3} ],0,0} + silk_RSHIFT_ROUND( );
> */
> t_s32x4 = vqdmulhq_s32(inval_s32x4, B_Q28_s32x4);
> /* silk_SMULWB(B_Q28[ {1,1,2,2} ], in[ k * 2 + {0,1,0,1} ] )
> */
> *S_s32x4 = vaddq_s32(*S_s32x4, t_s32x4);
> /* S[ {0,1,2,3} ] = silk_SMLAWB( S[ {0,1,2,3} ], B_Q28[ {1,1,2,2} ], in[
> k * 2 + {0,1,0,1} ] ); */
> }
>
> Thanks,
> Linfeng
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.xiph.org/pipermail/opus/attachments/20170508/0511f3aa/attachment-0001.html>
More information about the opus
mailing list