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Abstract

This paper describes scalar quantization with a focus on the implementation of the cur-
rent Vorbis encoder (version 1.0.1) and explains the reason of the well-known ”high frequency
boost” problem. Further, a solution is provided which is based on a smart selection of quan-
tization thresholds for specific sample distributions. Finally the solution’s impact on the
signal-to-noise ratio is discussed.

1 Introduction

Many of the Vorbis fans (including me) complained about the fact that the current Vorbis encoder
seems to amplify higher frequencies. This is especially a problem in double blind tests because it
enables users to distinguish between the original and the encoded sound file.

Due to the long time existence of this problem my motivation was high enough to investigate
on my own. So, here I am – trying to express my thoughts on this issue.

Currently the Vorbis encoder always quantizes the frequency samples of the residue vectors
linearly by rounding to the nearest integers. The psychoacoustic model determines a signal-to-
noise ratio for each of the signal’s frequency bands and controls the floor curve which is used to
create the residue vectors (a frequency adaptivly scaled version of the spectral vectors). Usually
the model tries to save bits in the upper parts of the spectrum and uses low SNRs for those regions.

I prepared a 120 second monophonic white noise audio file and encoded it using the current
Vorbis reference encoder (quality level 4). The analysis (figure 1) shows the mean energy (Y-axis)
versus frequency (X-axis) of 3 signals (original, encoded and error signal). We can clearly see that
the lower the SNR gets the higher the increase of energy will be. In the following section details
of the quantization process are presented.

2 Scalar Quantization

In scalar quantization we map signal samples (later on referred to as xt) to a smaller finite set of
indexed scalars and code the index only. Let C be the set of indexed scalars and Q the quantizer
mapping:

C = {ci ∈ R | i ∈ N, 0 ≤ i < n}

Q : R 7→ C

In general a quantizer tries to find a ci for each xt such that∑
t

|xt −Q(xt)|2
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Figure 1: The white noise experiment

is minimized (quantization error energy). The ratio∑
t x2

t∑
t |xt −Q(xt)|2

is usually called signal-to-noise ratio (SNR). It is easy to show that if we define Q as

Q(x) = ci | |x− ci| ≤ |x− cj | ∀j

the quantization error will be minimized (and the SNR will be maximized). This is actually how
the Vorbis encoder quantizes the samples, too. But how does this ”HF boost” issue fit in here?
Let’s analyze the following ratio which I refer to as QOR (quantized-to-original ratio):∑

t Q(xt)2∑
t x2

t

This is the ratio of the energy of the quantized signal to the original signal’s energy. We can easily
simulate the quantizer by replacing the samples xt with a PDF function representing a specific
distribution:

p : R 7→ [0,∞)∫ ∞

−∞
p(x) dx = 1

Prob(a ≤ xt ≤ b) =
∫ b

a

p(x) dx

Let’s also call
R : C 7→ P(R)

R(c) = {x ∈ R | Q(x) = c}
the quantization regions. Now, we can compute the SNR and QOR using these formulas:

SNR =

∫∞
−∞ p(x)x2 dx∑

i

∫
R(ci)

p(x)|x− ci|2 dx
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QOR =

∑
i

∫
R(ci)

p(x)c2
i dx∫∞

−∞ p(x)x2 dx

I’ve done a simulation of the Vorbis encoder’s scalar quantizer for two different sample distri-
butions (gaussian and triangular). To obtain some SNR/QOR pairs for each distribution I scaled
the PDF function at several levels (see figure 2) (The gaussian distribution is a quite realistic
approximation for the usually noisy upper spectrum part).
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Figure 2: SNR/QOR relationship for a linear scalar quantizer

Please compare the theoretically derived figure 2 to the real-life analysis in figure 1. They
really seem to match. For example: At 12000 Hz the Vorbis encoder quantized the samples with a
SNR of roughly 5.5 dB and got a QOR of 1 dB – just like it is the case for a gaussian distribution
(figure 2, blue line).

Further, this means this effect is not a bug in the Vorbis encoder it is rather a side effect of a
linear scalar quantizer that minimizes the energy of the quantization error in low-SNR situations.
So, the question is: How do we prevent this (natural) boost effect ? . . .

3 Quantization Thresholds

If we equally shift all quantization thresholds by d away from zero we decrease the QOR while
keeping the SNR as large as possible (see figure 3 for an example).

For each sample distribution (type & variance) a d can be determined such that the QOR
equals 0 dB. In figure 4 the optimal shift d (Y-axis) is shown for the source’s mean deviation
sigma (X-axis) in case of a gaussian sample distribution.

Of course, the modification of quantization thresholds affects the signal-to-noise ratio. But my
personal experiments have shown that those slight changes result in a rather negligible impact
(see figure 5 for more details). In the worst case we’ll loose 0.3 dB of the SNR which is tolerable.
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Figure 3: Shifting the quantization thresholds to compensate for a positive QOR

4 Updating the Vorbis encoder’s implementation

The residue samples are coded in partitions with an appropriate set of code books that match
the partitions’ sample distribution. Therefore classification codes are stored in the bit stream.
One could easily assign an appropriate threshold shift d to each of those classes and use it for
quantization. This could be done offline before compile time.

Quantization with the modified thresholds can be reduced to ordinary quantization by adjusting
the residue samples (simply shifting the values towards zero by d).

5 Conclusion

In this paper I’ve shown the ”why” of the high-frequency-boost effect and how to get rid of it.
The implementation should not be too complicated. For further details on this topic I can be
contacted at <sgeseman at upb dot de>.
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Figure 4: Optimal (QOR=0 dB) threshold shift d for a gaussian source
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Figure 5: The solutions impact on the SNR
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