Opus Coarse Energy Predictor Notes (Round 5)

Jake Taylor (yupferris@gmail.com), 3 July 2021

I've solved it - I was simply mistaken about what the output of the filters should be. Instead of the filters outputting the prediction, they output the residual directly. Under this interpretation, everything falls into place.

According to the paper ${ }^{1} / \mathrm{RFC}^{2}$, the $2 \mathrm{D} z$-transform should be:

$$
A\left(z_{\ell}, z_{b}\right)=\left(1-\alpha z_{\ell}^{-1}\right) \cdot \frac{1-z_{b}^{-1}}{1-\beta z_{b}^{-1}}
$$

I've simplified the source code (in unquant_coarse_energy in quant_bands.c in libopus $1.3 .1^{3}$) to the following C (pseudo)code:

```
void unquant_coarse_energy(float *e, int bands) {
    float alpha = /* ... */;
    float beta = /* ... */;
    float prev = 0.0f;
    for (int b = 0; b < bands; b++) {
        float r = /* read from bitstream */;
        e[i] = alpha *e[i] + prev + r;
        prev = prev + (1 - beta) *r;
    }
}
```

The goal is simple: extract difference equations from the code, derive the corresponding z-transforms, and then solve the final z-transform which should hopefully match what the paper/RFC list.

The code is governed by the following difference equations:

$$
\begin{gathered}
e[\ell, b]=\alpha e[\ell-1, b]+\operatorname{prev}[\ell, b-1]+r[\ell, b] \\
\operatorname{prev}[\ell, b]=\operatorname{prev}[\ell, b-1]+(1-\beta) r[\ell, b]
\end{gathered}
$$

The corresponding z-transforms are:

$$
\begin{gathered}
E\left(z_{\ell}, z_{b}\right)=\alpha z_{\ell}^{-1} E\left(z_{\ell}, z_{b}\right)+z_{b}^{-1} \operatorname{Prev}\left(z_{\ell}, z_{b}\right)+R\left(z_{\ell}, z_{b}\right) \\
\operatorname{Prev}\left(z_{\ell}, z_{b}\right)=z_{b}^{-1} \operatorname{Prev}\left(z_{\ell}, z_{b}\right)+(1-\beta) R\left(z_{\ell}, z_{b}\right)
\end{gathered}
$$

We expect the domain of the predictor to be e (the 2D "energy plane") and the range of the predictor to be r (the final coded residual). So, these two z-transforms should be all we need to reach the z-transform from the paper/RFC.

First, let's simplify the latter equation by isolating Prev:

$$
\operatorname{Prev}\left(z_{\ell}, z_{b}\right)=\frac{1-\beta}{1-z_{b}^{-1}} R\left(z_{\ell}, z_{b}\right)
$$

Now, we can substitute this definition in the first equation, which leaves only E and R signals (our expected domain and range, respectively):
$E\left(z_{\ell}, z_{b}\right)=\alpha z_{\ell}^{-1} E\left(z_{\ell}, z_{b}\right)+z_{b}^{-1} \cdot \frac{1-\beta}{1-z_{b}^{-1}} R\left(z_{\ell}, z_{b}\right)+R\left(z_{\ell}, z_{b}\right)$

[^0]Simplifying this yields:

$$
R\left(z_{\ell}, z_{b}\right)=\left(1-\alpha z_{\ell}^{-1}\right) \cdot \frac{1-z_{b}^{-1}}{1-\beta z_{b}^{-1}} E\left(z_{\ell}, z_{b}\right)
$$

Or, equivalently:

$$
A\left(z_{\ell}, z_{b}\right)=\left(1-\alpha z_{\ell}^{-1}\right) \cdot \frac{1-z_{b}^{-1}}{1-\beta z_{b}^{-1}}
$$

Just as expected!

[^0]: ${ }^{1}$ https://arxiv.org/abs/1602.04845
 ${ }^{2}$ https://datatracker.ietf.org/doc/html/rfc6716\#section-4.3.2
 ${ }^{3}$ https://opus-codec.org/release/stable/2019/04/12/libopus-1_3_1.html

