— OO0 XN RN =

Opus Coarse Energy Predictor Notes (Round 3)

Jake Taylor (yupferris@gmail.com), 29 June 2021

I’m having trouble reconciling the coarse energy predictor
implementation in the libopus source code and the 2D z-
transform description in the paper'. At this point, I've gotten
quite close, but am still having trouble with the last bits. And
help/guidance would be appreciated!

I’'ve simplified the source code (in unquant_coarse_energy
in quant_bands.c in libopus 1.3.1%) to the following C
(pseudo)code:

void unquant_coarse_energy (float =xe,
float alpha = /% ... =x/;
float beta VAT
float prev 0.0f;

int bands) {

for (int b 0; b < bands; b++) {
float r = /+ read from bitstream =/;
float q = alpha = e[i] + prev;
el[i] = q+ r;

prev prev + (1 - beta) = r;

According to the paper, the 2D z-transform should be:
1—2z !
1—- Bz !

First, to state what I think is obvious: the domain of this
filter should be a 2D “energy plane” with the ¢-dimension
representing frames and the b-dimension representing bands,
and the range should be the prediction (actual band energy
minus 7[¢,b], the residual). As a predictor, the filter must be
causal. Finally, according to the code above, the energy is
always O for b < 0 (b > bands, £ < 0, and £ > frames are
neither specified nor useful).

As outlined in the CELT blog post®, this z-transform de-
scribes two (separable) cascaded predictors:

A(ze, 20) = P(20)Q(2p)

The first is the /-dimension predictor whose domain is
indeed the 2D energy plane (albeit a single “row” of it
corresponding to a particular band in isolation over multiple
frames):

A(ze,zp) = (1 — az;l) .

P(z) =1—az,!
If we write the range explicitly:
P(z) = (1 — az; ") E(z)
This corresponds to the following difference equation:

pll] =

The range of this predictor is not the final prediction,
but an intermediate p. Note that this equation includes the

e[l] — ae[l — 1]

Uhttps://arxiv.org/abs/1602.04845
Zhttps://opus-codec.org/release/stable/2019/04/12/libopus-1_3_1.html
3https://jmvalin.dreamwidth.org/12000.html

current band’s energy e[¢], which is somewhat surprising for
a predictor, as e[¢] will not be known until it can be derived
after r is decoded in the decoder.

For each ¢ (“columns” of the energy plane), successive
elements of p are then fed into the b-dimension predictor,
whose range is the final prediction:

lfzb_1
-1
1 - Bz,

The equivalent difference equation is:

q[b] = p[b] — p[b — 1] + Bq[b — 1]

What remains now is to match these cascaded predictors
with the C code, which is not trivial because it’s not imme-
diately apparent that the above derived difference equations
are present in the code. There are likely several ways to do
this; two high-level approaches stand out to me: either “lower”
the expected z—transforms to difference equations and refactor
until we get matching code, or “lift” the code to z-transforms
and refactor until those match.

I find it easier to manipulate terms in the z-domain, so let’s
try the latter approach. We’ll first describe prewv in terms of the
known signals. Looking at the C code, we know the following:

Q(z) =

q[¢,b] = aell — 1,b] + prev[l, b]

Since ¢ is the output of the predictor, we can rewrite it in
terms of e and 7:

q[t,b] = e[t,b] — r[L, b

This is also given by the C code. Substituting this in the
previous equation yields:

prev[l,b] = e[l,b] — ae[l — 1,b] — r[¢, 1]
Or, equivalently:
prev[l,b] = pl[l,b] — r[¢,b]
Trivially, the corresponding z-transform is:
Prev(ze, zp) = P(z¢, 2) — R(2¢, 2)

So, prev apparently represents the difference between the
output of the /-dimension predictor p and the residual r. In-
terestingly, g, the expected range of the b-dimension predictor,
has completely disappeared! This is odd, as without this term,
it’s going to be difficult to reach a z-transform with the correct
range. However, ignoring this for now, we can still make some
kind of progress.

The difference equation governing prev is the following
(again, from the C code):

prev[l,b+ 1] = prev[l,b] + (1 — B)r[¢, b]



Note that the output of the difference equation is indexed
with b + 1 because it represents the value of prev after it
has been updated for this loop iteration. This is actually an
important distinction, because the code that modifies prev
uses the r[¢, b], i.e. the current residual, and these two signals
should have the correct phase with respect to one another. We
can also express this as:

prev[l,b] = prev[l,b—1] 4+ (1 — 8)r[(,b — 1]

These two definitions are, of course, equivalent. The z-
transform of this difference equation is:

Prev(ze, zp) = zbflPrev(zz7 zp) + (1 — 5)2;1R(2g,2b)

The final step involves substituting occurrences of prev with
equivalent expressions in terms of P and R:

P(z¢,2p)—R(z¢,20) = zb_l(P(Zg, 2p)—R(zy, zb))—&—(l—ﬁ)zb_lR(zz, 2p)
This can be simplified to:

R(Z@,Zb) . 1-— lel
Pz, ) 1Bz

While this filter has almost the expected definition with the
correct domain p, its range is r, not ¢! This is somewhat
unsurprising, as the ¢ terms cancelled out of our equations
above. However, I find it really strange that the output of the
predictor is actually the residual, and not the prediction itself.
One would think that, because the residual is not yet known to
the decoder until dequantization, the predictor would represent
the resulting energy minus that residual. I suppose I could be
happy accepting that, but it would still be nice to get a few
more pairs of eyes on this to make sure I haven’t made any
mistakes, and perhaps to provide additional insight on why the
predictor is factored this way.




