
1

Opus Coarse Energy Predictor Notes
Jake Taylor (yupferris@gmail.com), 27 June 2021

I’m having trouble reconciling the coarse energy predictor
implementation in the libopus source code and the 2D z-
transform description in the paper1.

I’ve simplified the source code (in unquant_coarse_energy
in quant_bands.c in libopus 1.3.12) to the following C-like
pseudocode:

1 vo id u n q u a n t _ c o a r s e _ e n e r g y (f l o a t *e , i n t bands) {
2 f l o a t a l p h a = / * . . . * / ;
3 f l o a t b e t a = / * . . . * / ;
4 f l o a t p = 0 . 0 f ;
5 f o r (i n t b = 0 ; b < bands ; b ++) {
6 f l o a t q = / * r e a d from b i t s t r e a m * / ;
7 e [i] = a l p h a * e [i] + p + q ;
8 p = p + q − b e t a * q ;
9 }

10 }

According to the paper, the 2D z-transform should be:

A(zℓ, zb) = (1− αz−1
ℓ) ·

1− z−1
b

1− βz−1
b

First off, to state what I think is obvious: the domain of
this filter should be a 2D “energy plane” with the ℓ-dimension
representing frames and the b-dimension representing bands,
and the range should be the prediction (actual band energy -
q[ℓ, b], the residual). As a predictor, the filter must be causal.
Finally, according to the code above, the energy is always 0 for
b < 0 (ℓ < 0, b ≥ bands, and ℓ ≥ frames are not specified
nor useful).

Assuming this filter is separable, we first have the ℓ-
dimension predictor:

A(zℓ) = 1− αz−1
ℓ

At first, I thought this was clearly embodied by
alpha * e[i] above. However, the z-transform implies that it
should actually be (1 − alpha) * e[i], so already we seem
to be missing another e[i] term somewhere (not to mention
alpha having the wrong sign).

The b-dimension predictor seems even more problematic:

A(zb) =
1− z−1

b

1− βz−1
b

This matches what’s listed in the CELT blog post3, and is
equivalent to:

Y (zb) =
1− z−1

b

1− βz−1
b

X(zb)

The equivalent difference equation is:

y[b] = x[b]− x[b− 1] + βy[b− 1]

1https://arxiv.org/abs/1602.04845
2https://opus-codec.org/release/stable/2019/04/12/libopus-1_3_1.html
3https://jmvalin.dreamwidth.org/12000.html

And substituting names from the C code, we should get
something like:

prev[b] = q[b]− q[b− 1] + βprev[b− 1]

Now, it should be mentioned that I actually asked about this
recently in the DSP stack exchange4 (after first emailing Jean-
Marc Valin directly, but I seem to have scared him off with
another wall of text similar to this one), and a helpful user
there was able to clarify many things. We actually arrived at
the same difference equation in the end, even though we got
there a bit of a different way (one which actually included both
dimensions from the original 2D z-transform), which suggests
that my analysis above is correct.

However, we still didn’t figure out the last bit: reconciling
it with the C code; it appears to differ. If I forget about the
above and just read the C code, we should get:

prev[b] = prev[b− 1] + q[b]− βq[b]

The equivalent z-transform for this difference equation
would be:

A(zb) =
1− β

1− z−1
b

This suggests that the actual predictor description might
instead be:

A(zℓ, zb) = (1− αz−1
ℓ) · 1− β

1− z−1
b

However, that still ignores the apparently-missing e[i] term
from the ℓ-dimension.

So, what am I missing? One thing that I glossed over
above that the first predictor dimenson (ℓ) appears to be
applied to the band energy directly (as expected), whereas
the second predictor dimension (b) appears to be applied to
the residual q. Since q can be expressed in terms of the
energy and the predictor, I tried several different interpretations
and substitutions in various domains in order to describe a
predictor in with the 2D “energy plane” as the domain and
the prediction as the range, and got some crazy z-transforms
that don’t look correct; here’s a few just for the curious:

A(zb, zℓ) =
1− β + αz−1

ℓ (1− z−1
b)

β − z−1
b

A(zb, zℓ) =
1 + βz−1

b − αz−1
ℓ (1− z−1

b)

(1 + β)z−1
b

So, at this point I’m kindof running in circles, and I think
I may have done something wrong; at least I’d like to think
that’s a lot more likely than the paper/RFC/libopus code were
out of sync somehow!

4https://dsp.stackexchange.com/questions/75972/having-trouble-
interpreting-z-transform-description-of-a-predictor-from-a-codec

